UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

 International General Certificate of Secondary Education

CHEMISTRY

0620/31
Paper 3 (Extended)
October/November 2009
1 hour 15 minutes
Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all questions.
A copy of the Periodic Table is printed on page 16.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part questions.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
Total	

This document consists of 14 printed pages and 2 blank pages.

1 (a) The major gases in unpolluted air are 79% nitrogen and 20% oxygen.
(i) Name another gaseous element in unpolluted air.
\qquad
(ii) Name two compounds in unpolluted air.
\qquad
(b) Two common pollutants in air are carbon monoxide and the oxides of nitrogen.
(i) Name another pollutant in air.
\qquad
(ii) Describe how carbon monoxide is formed.
\qquad
\qquad
\qquad
(iii) How are the oxides of nitrogen formed?
\qquad
\qquad
\qquad
(iv) Explain how a catalytic converter reduces the emission of these two gases.
\qquad
\qquad

2 Oxides are classified as acidic, basic, neutral and amphoteric.
(a) Complete the table.

type of oxide	pH of solution of oxide	example
acidic		
basic		
neutral		

(b) (i) Explain the term amphoteric.
\qquad
\qquad
(ii) Name two reagents that are needed to show that an oxide is amphoteric.
\qquad
\qquad

3 (a) An important ore of zinc is zinc blende, ZnS .
(i) How is zinc blende changed into zinc oxide?
\qquad
(ii) Write a balanced equation for the reduction of zinc oxide to zinc by carbon.
\qquad
(b) A major use of zinc is galvanizing; steel objects are coated with a thin layer of zinc. This protects the steel from rusting even when the layer of zinc is broken.

Explain, by mentioning ions and electrons, why the exposed steel does not rust.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Zinc electrodes have been used in cells for many years, one of the first was the Daniel cell in 1831.

(i) Give an explanation for the following in terms of atoms and ions. observation at zinc electrode - the electrode becomes smaller explanation
observation at copper electrode - the electrode becomes bigger explanation
(ii) When a current flows, charged particles move around the circuit.

What type of particle moves through the electrolytes?
\qquad
Which particle moves through the wires and the voltmeter?
\qquad

4 The distinctive smell of the seaside was thought to be caused by ozone, O_{3}. Ozone is a form of the element oxygen.
(a) A mixture of oxygen and ozone is formed by passing electric sparks through oxygen.

$$
3 \mathrm{O}_{2} \rightleftharpoons 2 \mathrm{O}_{3}
$$

Suggest a technique that might separate this mixture. Explain why this method separates the two forms of oxygen.
technique \qquad explanation \qquad
\qquad
\qquad
\qquad
(b) Ozone is an oxidant. It can oxidise an iodide to iodine.

$$
2 \mathrm{I}^{-}+\mathrm{O}_{3}+2 \mathrm{H}^{+} \rightarrow \mathrm{I}_{2}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

(i) What would you see when ozone is bubbled through aqueous acidified potassium iodide?
\qquad
\qquad
\qquad
\qquad
(ii) Explain in terms of electron transfer why the change from iodide ions to iodine molecules is oxidation.
\qquad
\qquad
(iii) Explain, using your answer to b(ii), why ozone is the oxidant in this reaction.
\qquad
\qquad
(c) It is now known that the smell of the seaside is due to the chemical dimethyl sulfide, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$.
(i) Draw a diagram that shows the arrangement of the valency electrons in one molecule of this covalent compound.
Use x to represent an electron from a carbon atom.
Use o to represent an electron from a hydrogen atom.
Use • to represent an electron from a sulfur atom.
(ii) Name the three compounds formed when dimethyl sulfide is burnt in excess oxygen.
\qquad
\qquad
\qquad

5 The first three elements in Group IV are carbon, silicon and germanium. The elements and their compounds have similar properties.
(a) The compound, silicon carbide, has a macromolecular structure similar to that of diamond.
(i) A major use of silicon carbide is to reinforce aluminium alloys which are used in the construction of spacecraft. Suggest three of its physical properties.
\qquad
\qquad
(ii) Complete the following description of the structure of silicon carbide.

Each carbon atom is bonded to four \qquad atoms.

Each silicon atom is bonded to \qquad carbon atoms.
(b) Germanium(IV) oxide, GeO_{2}, has the same macromolecular structure as silicon(IV) oxide. Draw the structural formula of germanium(IV) oxide.
(c) Germanium forms a series of hydrides comparable to the alkanes.
(i) Draw the structural formula of the hydride which contains four germanium atoms per molecule.
(ii) Predict the products of the complete combustion of this hydride.

6 (a) Sulfuric acid is made by the Contact process.

$$
2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}
$$

This is carried out in the presence of a catalyst at $450^{\circ} \mathrm{C}$ and 2 atmospheres pressure.
(i) How is the sulfur dioxide made?
\qquad
\qquad
(ii) Give another use of sulfur dioxide.
\qquad
(iii) Name the catalyst used.
\qquad
(iv) If the temperature is decreased to $300^{\circ} \mathrm{C}$, the yield of sulfur trioxide increases. Explain why this lower temperature is not used.
\qquad
\qquad
(v) Sulfur trioxide is dissolved in concentrated sulfuric acid. This is added to water to make more sulfuric acid. Why is sulfur trioxide not added directly to water?
\qquad
\qquad
(b) Sulfuric acid was first made in the Middle East by heating the mineral, green vitriol, $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$. The gases formed were cooled.
$\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{FeSO}_{4}(\mathrm{~s})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
green crystals yellow powder
$2 \mathrm{FeSO}_{4}(\mathrm{~s}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{SO}_{3}(\mathrm{~g})$
On cooling
$\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$ sulfuric acid
$\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$ sulfurous acid
(i) How could you show that the first reaction is reversible?
\qquad
(ii) Sulfurous acid is a reductant. What would you see when acidified potassium manganate(VII) is added to a solution containing this acid?
\qquad
\qquad
(iii) Suggest an explanation why sulfurous acid in contact with air changes into sulfuric acid.
(c) 9.12 g of anhydrous iron(II) sulfate was heated. Calculate the mass of iron(III) oxide formed and the volume of sulfur trioxide, at r.t.p., formed.
$2 \mathrm{FeSO}_{4}(\mathrm{~s}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{SO}_{3}(\mathrm{~g})$
mass of one mole of $\mathrm{FeSO}_{4}=152 \mathrm{~g}$
number of moles of FeSO_{4} used = \qquad
number of moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$
formed = \qquad
mass of one mole of $\mathrm{Fe}_{2} \mathrm{O}_{3} \quad=$.................... g
mass of iron(III) oxide formed $=$..................... g
number of moles of SO_{3} formed $=$.....................
volume of sulfur trioxide formed $\quad=\ldots \ldots \mathrm{dm}^{3}$

7 Butan-1-ol is used as a solvent for paints and varnishes, to make esters and as a fuel. Butan-1-ol can be manufactured from but-1-ene, which is made from petroleum.

Biobutanol is a fuel of the future. It can be made by the fermentation of almost any form of biomass - grain, straw, leaves etc.
(a) But-1-ene can be obtained from alkanes such as decane, $\mathrm{C}_{10} \mathrm{H}_{22}$, by cracking.
(i) Give the reaction conditions.
\qquad
\qquad
(ii) Complete an equation for the cracking of decane, $\mathrm{C}_{10} \mathrm{H}_{22}$, to give but-1-ene.

$$
\begin{equation*}
\mathrm{C}_{10} \mathrm{H}_{22} \rightarrow \tag{2}
\end{equation*}
$$

(iii) Name the reagent that reacts with but-1-ene to form butan-1-ol.
\qquad
(b) (i) Balance the equation for the complete combustion of butan-1-ol.

$$
\begin{equation*}
\ldots \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\ldots \mathrm{O}_{2} \rightarrow \text {......... } \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O} \tag{2}
\end{equation*}
$$

(ii) Write a word equation for the preparation of the ester butyl methanoate.
\qquad
(c) The fermentation of biomass by bacteria produces a mixture of products which include biobutanol, propanol, hydrogen and propanoic acid.
(i) Draw the structural formula of propanol and of propanoic acid. Show all the bonds. propanol
propanoic acid
(ii) Why is it important to develop these fuels, such as biobutanol, as alternatives to petroleum?
\qquad
(d) How could you show that butanol made from petroleum and biobutanol are the same chemical?
\qquad
\qquad

BLANK PAGE

BLANK PAGE
DATA SHEET
The Periodic Table of the Elements

$\stackrel{\text { N2 }}{\sim}$	
$\stackrel{R}{\sim}$	
®	
	¢ ¢
$\stackrel{\circ}{\circ}$	¢ ¢ ¢
会	틀 8
$\stackrel{\sim}{\sim}$	
을	
앙 ©	

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).

*58-71 Lanthanoid series
†90-103 Actinoid series

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

